Increasing urban traffic congestion and technological advancement have re-ignited interest across the world in vertical take-off and landing vehicles. Technological advancements in electric motors and battery technologies have resulted in low mass/high power output powertrains enabling diverse installation options on a chosen airframe minimising structural loads. The use of multiple electric motors offers potential for improved redundancy and safety. These advancements and increased flexibility in design have resulted in the development of numerous Electric Vertical Take-off and Landing (e-VTOL) concept vehicles with distributed electric propulsion including the Aurora Flight Sciences XV-24A, the XTI Trifan 600 and the Lilium Jet. These concept vehicles with propulsion units are distributed along the wingspan, fore-plane and/or tail-plane to provide lift for vertical flight and thrust for forward flight. There is a lack of knowledge with respect to the effect of distributed electric propulsion on the performance and handling qualities of these new vehicles and the possible implications for flight safety. This paper describes the performance and handling qualities assessment of a generic ducted fan canard e-VTOL in forward flight using simulated flight testing.